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aDepartment of Physics, Rutgers University

Piscataway, NJ 08854-8019 U.S.A.
bI.H.E.S., Le Bois-Marie, Bures-sur-Yvette, 91440 France

E-mail: mrd@physics.rutgers.edu, karp@rci.rutgers.edu,

lukic@physics.rutgers.edu, rreinb@physics.rutgers.edu

Abstract: We develop an iterative method for finding solutions to the hermitian Yang-

Mills equation on stable holomorphic vector bundles, following ideas recently developed by

Donaldson. As illustrations, we construct numerically the hermitian Einstein metrics on

the tangent bundle and a rank three vector bundle on P
2. In addition, we find a hermitian

Yang-Mills connection on a stable rank three vector bundle on the Fermat quintic.

Keywords: Statistical Methods, Differential and Algebraic Geometry.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep122007083/jhep122007083.pdf

mailto:mrd@physics.rutgers.edu
mailto:karp@rci.rutgers.edu
mailto:lukic@physics.rutgers.edu
mailto:rreinb@physics.rutgers.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
1
2
(
2
0
0
7
)
0
8
3

Contents

1. Introduction 1

2. Metrics of constant scalar curvature 4

2.1 Approximating Ricci-flat metrics by projective embedding 5

2.2 Balanced metrics 6

2.3 Finding the balanced metric 9

2.4 Balanced metrics and constant scalar curvature 9

3. The hermitian Yang-Mills equations 11

3.1 Embedding vector bundles 13

3.2 Generalized T-operator 13

3.2.1 Generalized T-operator 15

4. Examples 16

4.1 Hermite-Einstein metric on the tangent bundle of P
n 16

4.2 A stable rank 3 bundle over P
2 17

4.3 A rank 3 bundle on the Fermat quintic 19

4.3.1 Ricci flat metric on Fermat quintic 19

4.3.2 Solution of the hermitian Yang-Mills equation 20

1. Introduction

The modern study of compactification of higher dimensional theories can be divided into

two general branches. The first makes use of compactification manifolds with a good

deal of symmetry, such as the torus, sphere, squashed spheres and so on. Such spaces have

explicitly known metrics, allowing explicit solutions of the equations of motion, and explicit

Kaluza-Klein reduction. These solutions have many applications, such as supergravity

duals of large N gauge theories; however their high degree of symmetry tends to be a

problem in trying to obtain models with the level of complexity of the Standard Model or

its often-postulated extensions.

The second branch makes use of manifolds for which the relevant metrics are known

to exist by general theorems, but for which explicit expressions are not known. The most

famous examples are the Ricci-flat Kahler metrics conjectured to exist by Calabi and proven

to exist by Yau [1]. In 1985, it was proposed by Candelas et al [2] that compactification

of the heterotic string on a Calabi-Yau manifold could lead to quasi-realistic theories of

particle physics, containing grand unified extensions of the Standard Model and low energy
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supersymmetry. Since then, other metrics of this type, such as G2 holonomy metrics, have

been used in quasi-realistic compactifications; see for example [3].

Over the subsequent years, many tricks were developed to bypass the difficulties posed

by not knowing the compactification metric. These tricks began with the algebraic geom-

etry behind the theorems of Yau and Donaldson-Uhlenbeck-Yau, and gradually evolved

into entire branches of mathematical physics, such as topological string theory and special

geometry. To drastically oversimplify, the general picture is that certain “protected” quan-

tities in the four dimensional Effective Field Theory (EFT), such as the superpotential in

theories with four supercharges, and the prepotential in theories with eight supercharges,

can be computed using techniques combining algebraic geometry with physical ideas. Other

quantities, such as the Kahler potential in theories with four supercharges, cannot be com-

puted directly. Since a good deal of important physics depends on the Kahler potential —

precise values of particle masses, and the existence and stability of supersymmetry breaking

vacua, this situation is not very satisfactory.

Almost all present knowledge about the Kahler potential in the EFT comes from

studying expansions around more computable limits. The best known example is the

case of N = 1 compactifications which contain N = 2 subsectors, such as heterotic (2, 2)

models, or type II on Calabi-Yau orientifolds. In these cases, there is a limit in which

part of the N = 1 Kahler potential becomes equal to that of the related N = 2 theory,

which is computable using special geometry. Other examples include the solvable orbifold

or Gepner model limits, at which the entire Kahler potential is computable in principle

using CFT techniques. However, it is not clear at present how representative such results

are of the general case. Even a limited ability to compute in the general case would allow

studying this question.

One completely general technique for addressing such problems is to compute the Ricci-

flat metrics and related quantities numerically. Numerical methods are unavoidable in other

areas of physics, beginning with such seemingly elementary problems as computing the

spectrum of the helium atom or integrating Newton’s equations for the three body problem

in celestial mechanics; it would be surprising if string theory could avoid this. To bring

string theory closer to a possible confrontation with real data, for example from collider

physics, it may be valuable to develop these missing parts of the theory of compactification.

In this work, we make a start in this direction by showing two things. First, we

review how to use existing mathematical techniques to numerically approximate metrics

on Kahler manifolds, along lines recently developed by Donaldson [4]. Second, we extend

these mathematical techniques to hermitian Yang-Mills connections. It will be clear that

these techniques could be pushed to compute higher order terms, metrics on moduli spaces,

and the like. A subsequent paper will explain the numerical methods in more detail and do

some simple computations of terms in the EFT for compactification on a quintic Calabi-Yau

3-manifold.

Our direct inspirations are Donaldson’s work [4] on numerical approximation of metrics,

and of Wang [5] developing the corresponding mathematics for vector bundles. We can

also cite Headrick and Wiseman [6], who made a pioneering numerical study of the K3

metric using position-space methods. Finally, the first author is particularly indebted to
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Bernie Shiffman and Steve Zelditch for teaching him the basics of asymptotic analysis on

holomorphic line bundles, and for advice in the early stages of this project, in particular

for pointing out Wang’s work.

Let us briefly explain the problem and survey some of the approaches one might take

towards it, before beginning the detailed development in section 2. Following [2], the

derivation of the matter Lagrangian in a heterotic compactification on a Calabi-Yau X

carrying a bundle V involves the following steps:

(1) Find the Ricci-flat metric gij (with specified moduli) on X.

(2) Find the hermitian Yang-Mills connection Ai on V .

(3) Find the zero modes ψα of the Dirac operator. As is standard, on a Kahler manifold

this amounts to finding harmonic differential forms ψ valued in V , i.e. solutions of

0 = (∂̄ + Ā)ψ = (∂̄ + Ā)∗ψ, where ∗ denotes the adjoint operator.

(4) Find an orthonormal basis of forms ψ.

(5) Compute the integrals over X of wedge products of these forms to get the superpo-

tential.

The key step for us is (4). Existing methods for computing the superpotential, such as [7 –

9], accomplish step (5) without needing the results of (1) and (2), by using unnormalized

zero modes. This leads to a superpotential defined in terms of fields whose kinetic term

is obtained from “some” unknown Kahler potential. To do better, we must either derive

normalized zero modes in (4) for use in (5), or else take the zero modes used in (5) and

compute their normalizations using the explicit metric from (1).

There seems to be no way of doing this without some knowledge of the Ricci-flat metric

and thus the first step is to choose some approximation scheme for this metric. One’s first

thought might be to follow standard practice in numerical relativity, as done in [6], and

introduce a six dimensional lattice which is a discrete approximation to the manifold X;

in other words a position space approach. Taking the Kahler potential K as the basic

dynamical variable, Einstein’s equations reduce to the complex Monge-Ampere equation

det(∂∂̄K) = Ω ∧ Ω̄ (1.1)

which can be solved by relaxation methods. One would then need to find similar lattice

approximations for the connection on V and the zero modes.

An alternative approach, introduced by Donaldson [4], is to use the natural embedding

of X into P
N−1 provided by the N sections of an ample line bundle Lk (we will explain this

in detail below). We then take as a candidate approximating metric on X the pull-back of

a Fubini-Study metric on P
N−1. Such a metric is defined by an N × N hermitian matrix.

By suitably choosing this matrix we can try to make the associated Fubini-Study metric

restrict to X in such a way that it gives a good approximation to the Ricci-flat metric on X.

A major advantage of this approach is that it avoids the complications and arbitrariness

involved in choosing an explicit discretization of X; rather the entire approximation scheme
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follows from a single parameter k, the scale of the first Chern class of L. Subsequent

mathematical development reveals more structure which can be used to our advantage.

For example, a very natural approximation to the Ricci-flat metric, which becomes exact

as k → ∞, is the so-called “balanced” metric. In a sense, to be described below, this is the

metric for which the embedding of X into P
N−1 has its center of mass at the “origin”. It also

satisfies a simple fixed point condition which can be used for relaxation, solving step (1).

Another advantage, which is key for the present application, is that Donaldson’s

method can be naturally extended to study holomorphic vector bundles on X. There

is a standard relation between holomorphic connections and hermitian metrics, which we

review in section 2, in which step (2) of the above prescription is turned into the problem

of finding a hermitian-Einstein metric on a vector bundle. For illustrative purposes we

will explicitly study hermitian-Einstein metrics on two spaces: complex projective space

P
n and the Fermat quintic threefold.

The organization of the paper is as follows. In section 2 we provide an overview

of the geometric background needed for our construction, in particular we will describe

Donaldson’s approach for getting metrics of constant scalar curvature. In section 3 we

explain a numerical approximation to the hermitian Einstein metric on a holomorphic

vector bundle by a simple adaptation of Donaldson’s scheme, building on mathematical

work of Wang. In section 4 we focus on several explicit examples. Here we describe some

of our numerical methods and results in detail. By design we are also able to test our

approximation scheme for TP
2(k), where TP

2 is the holomorphic tangent bundle of P
2,

since in this case one has an analytic solution.

2. Metrics of constant scalar curvature

We follow the plan outlined in the introduction, beginning with step (1). Let X be an

n-dimensional complex Kahler “compactification manifold.” Since we are not assuming it

is a valid string theory background, we can generalize the discussion to arbitrary n and

first Chern class c1(X).

The basic example we have in mind is the complex projective space P
n, parameterized

by the standard homogenous coordinates {Zi}
n
i=0, up to the identification {Zi} ∼= {λZi}

for λ ∈ C
∗. The Kahler potential

KFS = k log

(

n
∑

i=0

|Zi|
2

)

(2.1)

defines the Fubini-Study metric on P
n, with SU(n + 1) symmetry Zi → gj

i Zj, and g ∈

U(n + 1). The parameter k controls the Kahler class ω = ∂∂̄KFS.

Our other general example is the hypersurface defined by the vanishing of a degree d

polynomial in P
n:

f(Z) =
∑

i1···id

ci1···idZi1 . . . Zid . (2.2)

For n = 4 and d = 5 we get a quintic threefold Q. Its complex structure is determined

by the 126 parameters ci1···i5 , modulo the action of GL(5, C) on the Zi’s, which leaves 101
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parameters. The generic member of this family is smooth, and has b1,1 = 1. Therefore

the Kahler class is determined by a single real number. A simple one parameter family

of Kahler metrics on Q is obtained by pulling back the Fubini-Study metric on P
4, or

equivalently interpreting eq. (2.1) as a Kahler potential on Q. Of course this will not be

Ricci-flat.

2.1 Approximating Ricci-flat metrics by projective embedding

We now want to find a larger space of Kahler metrics in which to find a better approximation

to the Ricci flat metric. One simple generalization of eq. (2.1) can be obtained by choosing

an (n + 1) × (n + 1) hermitian matrix hij̄ , and writing

Kh = k log





n
∑

i,j̄=0

hij̄ZiZ̄j



 . (2.3)

Of course, by making a linear redefinition of coordinates, we could turn this back

into eq. (2.1), but doing so would modify eq. (2.2). Rather, by fixing eq. (2.2), this way we

get an (n + 1)2-parameter family of Kahler potentials.

Another way to think about this definition is to make the linear redefinition taking

h to the identity. In this case, the parameters we are varying to control the metric are

the extra 25 parameters in eq. (2.2) determining a specific embedding of Q into P
4. While

all of the embeddings are equivalent under a GL(5, C) action, once we use the metric, we

break this to U(5); thus the set of metrics we can obtain this way is parameterized by a

GL(5, C)/U(5) homogeneous space.

A simple generalization to get more parameters could be motivated by noticing

that eq. (2.1) is also equal to

KFS,k = log

(

n
∑

i=0

|Zi|
2

)k

(2.4)

= log





n
∑

i1,··· ,ik=0

Zi1 · · ·ZikZ̄i1 · · · Z̄ik



 (2.5)

and generalizing this to

Kh,k = log





n
∑

i1,··· ,ik,j̄1,··· ,j̄k=0

hi1···ik j̄1···j̄kZi1 · · ·ZikZ̄j̄1 · · · Z̄j̄k



 , (2.6)

which can again be interpreted as a Kahler potential on Q. In simple terms, we are using

higher degree polynomials as basis functions. Now we have an (n + 1)2k-parameter family

of metrics, and by taking k large we can imagine finding an arbitrarily good approximating

metric within this class.

One way to find the best approximation to the Ricci-flat metric on Q would be to

write eq. (1.1) directly in these variables. Note that the holomorphic (n, 0)-form Ω is
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known explicitly. For example, in the coordinate patch where Z0 6= 0 we can choose the

local coordinates wi = Zi/Z0, in terms of which

Ω =
dw1 dw2 dw3

∂f/∂w4
,

and thus one can write the volume form for the Ricci flat metric explicitly,

dvolX = Ω ∧ Ω̄ (2.7)

without solving any equations. One might then substitute eq. (2.6) into eq. (1.1), evaluate

this at a set of points pi, and solve the resulting system of nonlinear equations. These

are rather complicated, however, and furthermore we have introduced arbitrariness in the

choice of the pi. Now this arbitrariness can have its uses, for example we might use it

to place more points in regions of large curvature. On the other hand, it means that the

results will not have simple mathematical or physical interpretations, except in the limit

in which the number of points is so large that we can ignore the discretization.1 Before

investing a lot of effort into their study, we should try to improve on this point.

2.2 Balanced metrics

There is a pretty construction that goes back to [10] which provides a more natural ap-

proximating metric, and a numerical scheme which is guaranteed to converge to it.

First, we can systematize the construction which led to eq. (2.6), by noting that the

basis functions are products of degree k holomorphic times degree k antiholomorphic mono-

mials. Let the number of independent holomorphic degree k monomials be N + 1; this is

the binomial coefficient
(n+k

k

)

for P
n, and we will give it for Q later.

Let us phrase this construction in a way which can be used for an arbitrary manifold

X. We choose a holomorphic line bundle L over X, with N global sections. Denote a

complete basis of these as sα, where 1 ≤ α ≤ N , and consider the map

ik : X −→ P
N−1 ik(Z0, . . . , Zn) = (s1(Z), s2(Z), . . . , sN (Z)).

The geometric picture is that each point in our original manifold X (parameterized by

the Zi) corresponds to a point in C
N parameterized by the sections sα. Since choosing

a different frame for L would produce an overall rescaling sα → λsα, the overall scale is

undetermined. Granting that s1(Z), s2(Z), . . . , sN (Z) do not vanish simultaneously, this

gives us a map to P
N−1.

The simplest example is to embed P
1 using L = OP1(k) into P

k. In this case the map is

ik(Z0, Z1) = (Zk
0 , Zk−1

0 Z1, Zk−2
0 Z2

1 , . . . , Z0Z
k−1
1 , Zk

1 ).

In general we want this map to be an embedding, i.e. that distinct points map to

distinct points with non-vanishing Jacobian. In general, we can appeal to the Kodaira

1Or unless we can come up with a construction in which some sort of physical objects at the points pi

enforce the equations.
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embedding theorem, which asserts that for positive L this will be true for all Lk for some

k ≥ k0. For non-singular quintics, this is true for OM (k) for all k ≥ 1. As a point

of language, the pair of a manifold X with a positive line bundle L is referred to as a

polarized manifold (X,L); the condition that this construction provides an embedding for

some k is that L is ample.

Now, we consider our family eq. (2.6) of candidate Kähler potentials, and rewrite them

as

Kh = log





∑

α,β̄

hαβ̄sαs̄β̄





or simply

Kh ≡ log ||s||2h (2.8)

for short, where sα plays the role of a degree k monomial. We now have an N2-parameter

family of Kähler potentials, and will seek a good approximating metric in this family. Just

as before, this amounts to using the pull-back of a Fubini-Study metric from P
N−1 as our

trial metric.

Mathematically, the simplest interpretation of eq. (2.8) is that it defines a hermitian

metric on the line bundle L = OM (k). This is a sesquilinear map from L̄ ⊗ L to smooth

functions C∞(X), here defined by

(s, s′) = e−Kh · s̄ · s′ =
s̄ · s′

∑

α,β̄ hαβ̄sαs̄β̄

.

The point is that a change of frame, which acts on our explicit sections as sα → λsα,

cancels out of this expression.2

This metric allow us to define an inner product between the global sections:

Hαβ̄ = 〈sβ|sα〉 = i

∫

X

sαs̄β̄

||s||2h
dvolX . (2.9)

This is the “physical” inner product in a sense we will explain further below. Note that it

depends on h in a nonlinear way, since h appears in the denominator.

Here dvolX is a volume form on X, which has to be chosen. If X is Calabi-Yau, it is

simplest to use eq. (2.7) to define dvolX . If X is not Calabi-Yau, the standard choice of

dvolX is to take dvolω = ωn/n!, where ω is the Kahler metric derived from eq. (2.8). This

depends on h as well, so the expression is even more non-linear in h.

Thus, given h and a basis of global sections sα, we could compute the matrix of inner

products eq. (2.9). Once we have it, we could make a linear redefinition, say s̃ = H−1/2s,

and go to a basis of orthonormal sections where

Hαβ̄ = δαβ̄ . (2.10)

2A possibly more familiar physics use of this is in N = 1 supergravity: taking K → −K and s → W , one

gets the standard expression for the gravitino mass eK |W |2. In an example such as the flux superpotential,

in which W is a sum of various terms sα with constant coefficients, eq. (2.8) also applies to give K.
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On the other hand, eq. (2.8) also implicitly defines a notion of orthonormal basis locally

in the bundle, in which

hαβ̄ = δαβ̄ . (2.11)

This is a priori different from eq. (2.10); indeed we can freely postulate it when we

write eq. (2.8). However, if the two notions agree,

Hαβ̄ = (h−1)αβ̄ ,

then we can go to a basis of sections in which

Hαβ̄ = hαβ̄ = δαβ̄ . (2.12)

In this case, the embedding of X in P
N−1 using these sections is called balanced. More

generally, we call a polarized manifold (X,Lk) balanced if such an embedding exists.

An equivalent definition of the balanced embedding is arrived at if we consider the

function on X defined as

ρ(ω)(x) =
∑

α,β̄

(H−1)αβ̄(sα(x), s̄β̄(x)) (2.13)

or equivalently

ρ(ω)(x) =
∑

α

||sα(x)||2

where the second sum is taken over an orthonormal basis in which H = δαβ. X is balanced

precisely when ρ(ω)(x) is the constant function.

Many theorems have been proven about balanced manifolds. Let us first recall the

following theorem of Donaldson (Theorem 1 in [11]):

Theorem 1. Suppose the automorphism group Aut(X,L) is discrete. If (X,Lk) is bal-

anced, then the choice of basis in H0(X,Lk) such that ik(L) is balanced is unique up to the

action of U(N) × R
∗.

The condition on Aut(X,L), i.e., there are no continuous symmetries, is true for the quintic

Q. This theorem then tells us that, if a metric h exists which gives a balanced embedding,

it is unique up to scale.

Given a balanced embedding, one defines the balanced metric on X as the pullback of

the Fubini-Study metric (2.8):

ωk =
2π

k
i∗k(ωFS), (2.14)

The cohomology class of the Kahler form [ωk] = 2πc1(L) ∈ H2(X) is independent of k.

Using these definitions Donaldson proves that (Theorem 2 in [11]):

Theorem 2. Suppose Aut(X,L) is discrete and (X,Lk) is balanced for sufficiently large

k. If the metrics ωk converge in the C∞ norm to some limit ω∞ as k → ∞, then ω∞ is a

Kahler metric in the class 2πc1(L) with constant scalar curvature.
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The constant value of the scalar curvature is determined by c1(X), and in particular for

c1(X) = 0 the scalar curvature is zero. Thus, the balanced metrics ωk, in the large k limit,

converge to the Ricci flat metric.

Therefore, if we can find the unique balanced metric for a given L, it is a good candidate

for approximating the Ricci flat metric on X. One may ask where the complex structure

and Kahler moduli on which this Ricci flat metric depends, are put in. The complex

structure enters implicitly through the basis for holomorphic sections sα, as we will see in

examples below. As for the Kahler class, recall that this is determined, up to scale, to be

2πc1(L). Of course, the Ricci flatness condition is scale invariant, so the overall scale is

irrelevant; however the point of this is that if b1,1 > 1, then by appropriately choosing L

we choose a particular ray in the Kahler cone. This will not be relevant for our examples

here but shows that in principle any Ricci-flat Kahler metric could be approximated in this

way.

2.3 Finding the balanced metric

In [12, 4] Donaldson proposes a method to determine the hermitian metric h in eq. (2.8),

which will lead to a balanced metric. He defines the “T operator”, which given a metric h

computes the matrix H:

Hαβ̄ = T (h)αβ̄ ≡
N

vol(X)

∫

X

sαs̄β̄

||s||2h
dvolX (2.15)

Now, suppose we find a fixed point of this operator,

T (h) = h.

Then, by a GL(N) change of basis s → h−1/2s, we can bring h to the unit matrix, which

will produce the balanced embedding.

The simplest way to find a fixed point of an operator is to iterate it. If the operator is

contracting, this is guaranteed to work. In our case we have the following theorem [11, 13]:

Theorem 3. Suppose that Aut(X,L) is discrete. If a balanced embedding exists then, for

any initial G0 hermitian metric, the sequence T r(G0) converges to the balanced metric G

as r → ∞.

Thus the T operator can be used to find approximate Ricci-flat metrics on Calabi-Yau man-

ifolds, and more generally approximate constant scalar curvature Kahler metrics. In [4]

Donaldson studies numerically explicit P
1 and K3 examples. We will discuss some addi-

tional examples below.

2.4 Balanced metrics and constant scalar curvature

In this subsection we outline the reason why the limit of a family of balanced metrics has

constant scalar curvature. This is the content of Theorem 2. This will be very useful later

on, when we generalize the T-operator to vector bundles.

Note that the function ρ(ω) is independent of the choice of orthonormal basis, and

remains unchanged if we replace h by a constant scalar multiple. Therefore, it is an
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invariant of the Kahler form. As discussed before, the balanced condition for (X,Lk) is

equivalent to the existence of a metric ωk such that ρ(ωk) is a constant function on X. The

asymptotic behavior of the “density of states” function ρ(ωk) as k → ∞ for fixed ω has

been studied in [10, 14 – 16]. Note that for any metric

∫

X
ρk(ω) = N = dim H0(X,Lk) = a0k

n + a1k
n−1 + · · · , (2.16)

where the coefficients ai can be determined using the Riemann-Roch formula. Note that

a0 is just the volume of X and

a1 =
1

2π

∫

X
S(ω),

where S(ω) is the scalar curvature of ω. We will use the following result (Prop. 6 in [11]):

Proposition 1. 1. ρ(ω) has an asymptotic expansion as k → ∞

ρk(ω) ∼ A0(ω)kn + A1(ω)kn−1 + · · ·

where Ai(ω) are smooth functions on X defined locally by ω. In particular,

A0(ω) = 1, A1(ω) =
1

2π
S(ω).

2. The expansion holds uniformly in the C∞ norm; in that for any r,N > 0

∥

∥

∥

∥

∥

ρk(ω) −
N

∑

i=0

Ai(ω)kn−i

∥

∥

∥

∥

∥

Cr(X)

6 Kr,N,ωkn−N−1

for some constants Kr,N,ω.

Now assume that we are given balanced metrics ωk converging to ω∞. Then by the

previous proposition

∥

∥

∥

∥

ρk(ωk) − kn −
1

2π
S(ωk)k

n−1

∥

∥

∥

∥

C0(X)

6 ckn−2

for some constant c. Since ωk is balanced ρk(ωk) is constant: ρk(ωk) = dim H0(X,Lk)/V ,

and we can use (2.16) to find that

∥

∥

∥

∥

1

V
(V kn + a1k

n−1 + · · · ) − kn −
1

2π
S(ωk)k

n−1

∥

∥

∥

∥

C0(X)

6 ckn−2,

or equivalently
∥

∥

∥

∥

2π

V
a1 − S(ωk)

∥

∥

∥

∥

C0(X)

= O(k−1)

Hence S(ω∞) = S0 = constant, where S0 = 1
V

∫

X S(ω) is the mean curvature.

– 10 –



J
H
E
P
1
2
(
2
0
0
7
)
0
8
3

3. The hermitian Yang-Mills equations

We are now ready to generalize the T-operator, which provided an approximation scheme

for the constant curvature metric, to a “generalized T-operator” which can be used to find

a solution of the Yang-Mills equations on a Calabi-Yau manifold X.

We briefly recall the argument that a solution of the Yang-Mills equations which pre-

serves N = 1 supersymmetry, must be hermitian Yang-Mills. First, the supersymmetry

variation of the gaugino has to vanish,

ΓµνF a
µνǫ = 0,

where F a
µν is the Yang-Mills field strength, and ǫ is the covariantly constant spinor.

Going to complex coordinates (i, ī) and rewriting of the Clifford algebra as

Γi → dzi; Γī → ωīj ∂j ,

this is equivalent to

Fij = Fīj̄ = 0; ωij̄Fij̄ = 0.

This is the particular case of the hermitian Yang-Mills equations with Tr F = 0. The

general case replaces the last equation with

ωij̄Fij̄ = c · 1

for a constant c, determined by the first Chern class. For convenience we abbreviate this

equation below as
∧

F = c · 1.

Next we review the relation between solutions of these equations, and holomorphic

bundles carrying hermitian-Einstein metrics. In physics, one defines Yang-Mills theory in

terms of a connection on a vector bundle with a fixed metric. First, a connection on a

vector bundle can be described in terms of a connection one-form by choosing a frame for

the bundle, say ea(x), and defining the covariant derivative as

D(vaea) = (dva)ea + vaAb
aeb.

In physics, one usually takes the frame to be orthonormal, (ea, eb) = δab, and thus

(u, v) = (uaea, v
beb) = (ua)∗va, (3.1)

where ∗ is complex conjugation.

The condition that the connection be compatible with the metric,

d(u, v) = (Du, v) + (u,Dv), (3.2)

reduces to requiring the connection one-form to be anti-hermitian,

A(phys)
i = −A(phys)†

i . (3.3)
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In mathematics, one often considers a more general frame, for which the metric is a

hermitian matrix,

(ea, eb) = Gāb, G = G†. (3.4)

Decomposing the positive definite hermitian matrix G as

G = h†h, (3.5)

we see that the math and physics conventions differ by a complex gauge transformation:

u = h s. This complex gauge transformation leads to a different form for the connection,

according to the standard relation

∂i + A(math)
i = h(∂i + A(phys)

i)h
−1. (3.6)

Now, equations of the form

Fīj̄ = 0 ∀ ī, j̄

will be integrability conditions for the covariant derivatives. In particular, this equation

has the general solution

∂ī + A(phys)
ī = g−1∂̄īg,

in other words the D̄ covariant derivatives are obtained from the derivative ∂̄ by a complex

gauge transformation.

Thus, we can use eq. (3.6) to bring the connection to the gauge Ā(math) = 0, at the

cost of losing the simple metric eq. (3.1) and eq. (3.3). Actually, the covariant derivative

is still compatible with the metric as in eq. (3.2), we just have a non-trivial fiber metric G.

The metric compatibility condition becomes

0 = ∂(u, v) = (∂̄u, v) + (u,Dv)

so

∂Gāb = GācA
(math)c

b

or equivalently

A(math) = G−1∂G.

Conversely, if we are given a metric G, then we can use the inverse complex gauge

transformation to bring the connection back to the unitary form. This leads to the formula

Ā
(phys)

ī
= h(∂̄īh

−1).

Using eq. (3.3), we can get the entire connection, so the metric contains the same informa-

tion as a connection satisfying F (0,2) = F (2,0) = 0. Thus we can rephrase the final equation

on F (1,1), as a condition on the metric. It is simplest to write this in the “mathematical”

gauge Ā(math) = 0, in which it is

c · 1 = ωij̄Fij̄ = ωj̄i∂̄j̄A
(math)

i = ωj̄i∂̄j̄

(

G−1∂iG
)

. (3.7)
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A metric G satisfying this equation is a “hermitian-Einstein” metric. It is simply related

to a hermitian Yang-Mills connection as above.

Finally, using the complex gauge transformation above, the standard physical inner

product

〈u|v〉 ≡

∫

X
(u∗)av

a (3.8)

is equal to the natural inner product generalizing eq. (2.9),

〈u|v〉 = 〈h s|h t〉 (3.9)

= i

∫

X
Gab̄ s̄b̄ ta dvolX . (3.10)

3.1 Embedding vector bundles

We now want to represent the hermitian metric Gab̄ in the same way as we did for line

bundles, by introducing a complete basis of sections. Now an irreducible bundle E with

c1 = 0, and thus of interest for string compactification, will not have global sections. What

we do instead is to make the same construction for E(k) ≡ E ⊗Lk, which will have global

sections. We can again think of these sections as a basis of polynomials approximating

functions on which to base our numerical scheme.

Thus, consider a rank r vector bundle E, and suppose that E(k) has N global sections.

Choosing a local frame as above, a basis for these will be an N by r matrix za
α. This is

defined up to a GL(N) change of basis, and up to a GL(r) change of frame. After making

these identifications, such a matrix z defines a point in the Grassmannian G(r,N) of r

planes in C
N .

Given a metric Gab̄ on the fibers of E(k), we can define the matrix of inner products

Hαβ̄ = 〈zβ |zα〉

as above. Such a metric could be obtained by multiplying a metric G(0) on E, by one on

Lk as defined earlier. Or, it might simply be an r × r hermitian matrix of functions (in

each local frame) with appropriate transformation properties.

Now there is a natural set of metrics on E(k) generalizing eq. (2.8), again parameterized

by an N × N matrix, defined by

(G−1)ab̄ = gαβ̄za
α(z†)b̄β̄ ,

where the dagger is hermitian conjugation. Again, the approach will be to find a natural

metric in this class which is a good approximation to the hermitian-Einstein metric. This

will lead to a hermitian Yang-Mills connection on E(k). But this is simply related to the

hermitian Yang-Mills connection on E, because twisting by Lk only modifies the trace part

of the field strength.

3.2 Generalized T-operator

We will now turn to a proposal for a generalized T-operator, which produces the hermitian-

Einstein metric on a stable vector bundle. To begin with we use results by Wang about

balanced metrics on such bundles [5].

– 13 –



J
H
E
P
1
2
(
2
0
0
7
)
0
8
3

We consider again a polarized n dimensional manifold (X,L) and an irreducible holo-

morphic vector bundle E of rank r on X. Then by Kodaira embedding we know that for

k sufficiently large, a basis za
α of the global sections of E(k) will give rise to an embedding

X
Â

Ä i
// G(r,N).

Now Wang proves the following:

Theorem 4. E is Gieseker stable iff there is an integer k0 such that for k > k0, the kth

embedding given as above can be moved to a balanced place, i.e., there is a g ∈ SL(N, C)

which is unique up to left translation by SU(N) such that:

1

V

∫

g·X
z(z†z)−1z† dV =

r

N
IN×N .

We call the equation above the “balance equation.” In the case that E is a line bundle,

this definition reduces to that of a balanced embedding in P
N−1.

Now, let h be a hermitian metric on L and H be a hermitian metric on E, and fix

the Kähler form on X to be ω =
i

2π
Ric(h). Let vol denote the volume of (X,ω). Suppose

S1, . . . , SN is an orthonormal basis of H0(X,E(k)) with respect to the induced L2 -metric

〈. , .〉. The Szegö kernel Bk is a generalization of the function ρ(ω) defined in eq. (2.13). It

is defined as the fiberwise homomorphism

Bk(x) =

N
∑

i=1

〈., Si(x)〉Si(x) : Ex → Ex.

This expression is independent of the choice of orthonormal basis.

Now the local form of Theorem 4 can be stated as follows (Corollary 1.1 of [5]):

Theorem 5. E is Gieseker stable iff there is an integer k0 such that for any k > k0, we

can find a metric H(k), which we will call the balanced metric on E(k), such that the Szegö

kernel satisfies the equation

Bk(x) =
χ(k)

V r
IE

where IE is the identity bundle morphism and χ(k) is the Hilbert polynomial of E with

respect to the polarization L.

The theorem tells us that if E is Gieseker stable then for large k there is a balanced

metric H(k) on E(k). Hence we will have a sequence of hermitian metrics Hk := H(k)⊗h−k

on E. The importance of the balanced metric H(k) for physical applications follows from

the following theorem:

Theorem 6. Suppose E is Gieseker stable. If Hk → H∞ in the C∞ norm as k → ∞,

then the metric H∞ solves the “weak hermitian-Einstein equation”,

i

2π

∧

F(E,H∞) +
1

2
S(ω)IE =

(

deg(E)

V r
+

s̄

2

)

· IE (3.11)
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where
∧

F(E,H∞) is the contraction of the curvature form of E with ω, S(ω) is the scalar

curvature of X and s̄ := 1
V

∫

X S ωn

n! . Conversely, suppose there is a hermitian metric H∞

solving this equation, then Hk → H∞ in Cr norm for any r.

To prove (3.11) one can work along the same lines as in the proof of Theorem 2, using

Catlin’s and Wang’s results for the expansion of the Szegö kernel.

Proposition 2. 1. For fixed hermitian metrics H and h on E and OX(1) respectively,

there is an asymptotic expansion as k → ∞

Bk(H,h) ∼ A0(H,h)kn + A1(H,h)kn−1 + · · · ,

where Ai(H,h) ∈ Γ( End E) are smooth sections defined locally by H. In particular,

A0(H,h) = IE , A1(H,h) =
i

2π

∧

F (E,Ric(h)) +
1

2
S(ω) · IE

2. The expansion holds uniformly in the C∞ norm; in the sense that for any r,N > 0
∥

∥

∥

∥

∥

Bk(H,h) −
N

∑

i=0

Ai(H,h)kn−i

∥

∥

∥

∥

∥

Cr

6 Kr,N,H,hkn−N−1

for some constants Kr,N,H,h.

Now we can repeat the steps of the argument outlined in section 2.4. Under the

assumption that Hk → H∞ in C∞ we find that for r > 0
∥

∥

∥

∥

Bk(Hk) − IEkn −
i

2π

∧

F (E,Ric(h)) +
1

2
S(ω) · IEkn−1

∥

∥

∥

∥

Cr

6 Ckn−2

for some fixed constant C. By assumption H(k) is balanced, hence Bk(Hk) = χ(k)/rV IE .

This implies that
∥

∥

∥

∥

i

2π

∧

F(E,H∞) +
1

2
S(ω)IE −

(

deg(E)

V r
+

s̄

2

)

· IE

∥

∥

∥

∥

= O(k1).

3.2.1 Generalized T-operator

Using the strong analogy between the construction of metrics with constant Kahler curva-

ture and metrics on stable bundles which obey the hermitian-Einstein equation, we propose

the following generalized T-operator:

T (G) =
N

V r

∫

X
z(z†G−1z)−1z† dV , (3.12)

where as before, z is an N by r matrix of holomorphic sections of E.

The relevance of this proposal follows from the following conjecture:

Conjecture 1. If a balanced embedding i : X →֒ G(r,N) exists, then for every hermitian

N × N matrix G, the sequence T r(G) converges to a fixed point G0 as r → ∞. Using an

orthonormal basis with respect to G0, the embedding is balanced, and as outlined above, it

provides an approximate solution for the corresponding hermitian-Einstein equation.
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This conjecture may require additional technical assumptions, such as the earlier one of

Aut(X,E) being discrete. We have not attempted to prove it, but would hope that this

can be done along the same lines as [11, 13].

In the following section we will numerically test the conjecture for several stable vector

bundles on P
2, and on the Fermat quintic in P

4, and find that it works for these cases.

4. Examples

4.1 Hermite-Einstein metric on the tangent bundle of P
n

Let P
n be the complex projective space of dimension n, and {Zi}

i=n
i=0 its homogeneous

coordinates. We will work on the open set Z0 6= 0 and chose the local inhomogeneous

coordinates wi = Zi/Z0. The Fubini-Study metric on P
n

gij̄ =
1

1 +
∑

i |wi|2
δij̄ −

wiw̄j

(1 +
∑

i |wi|2)2
.

is the unique maximally symmetric metric, with its group of Killing symmetries isomorphic

to U(n + 1). In addition, this metric is Einstein, that is its Ricci tensor is proportional to

the metric itself. Therefore its associated curvature tensor obeys the hermitian Yang-Mills

equation. The Donaldson-Uhlenbeck-Yau theorem then implies that the tangent bundle of

P
n, TP

n, is a rank n stable bundle on P
n.3 It follow from this that the balanced metric on

the bundle TP
n must be the Fubini-Study metric.

To describe the tangent bundle TP
n we use the Euler sequence

0 −→ OPn −→ OPn(1)⊕(n+1) −→ TP
n −→ 0. (4.1)

Here OPn(1) denotes the hyperplane line bundle. After twisting the sequence by OPn(k)

and taking the cohomology we find the short exact sequence (SES)

0 −→ H0(Pn,OPn(k)) −→ H0(Pn,OPn(k + 1)⊕(n+1)) −→ H0(Pn, TP
n(k)) −→ 0. (4.2)

This gives an explicit description for H0(Pn, TP
n(k)), which for sufficiently large k gives

the embedding

P
n →֒ G(n, W ) (4.3)

where W = H0(Pn, TP
n(k))∗, and G(n, W ) is the Grassmannian of n-planes in W .

Based on (4.2), we choose to describe the global sections of TP
n(k) by an n + 1 vector

(M0, . . . ,Mn)

where {Mi}
n
i=1 are arbitrary monomials of degree k + 1 in the homogeneous coordinates

Zi, while M0 is any degree k + 1 monomial which does not contain an Z0.

Now we show how to construct the embedding (4.2) for any k ≥ 0. We start by

choosing a frame {êi}
n
i=0 for the vector bundle O(k + 1)⊕(n+1). This amounts to choosing

3The stability of TP
n also has purely algebraic proof.
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a section for every one the n + 1 summands. For simplicity we chose the same section in

every summand. The Euler sequence (4.1) imposes the condition

n
∑

i=0

Ziêi = 0.

Locally this gives a frame for TP
n, if we solve for

ê0 = −
n

∑

i=1

Zi

Z0
êi = −

n
∑

i=1

wiêi.

Expanding the global sections of TP
n(k) in the local frame {êi}

n
i=1 gives an n × dim(W )

matrix, which is the explicit realization of our embedding [17].

To illustrate the procedure consider TP
2(0). OP2(1) has 3 global sections: Z0, Z1, Z2.

Choosing Z0 to be the local frame in every summand of OP2(1)⊕3, and discarding the global

section Z0 from the first OP2(1), we find the matrix

z =

(

−w2
1 −w1w2 1 w1 w2 0 0 0

−w1w2 −w2
2 0 0 0 1 w1 w2

)

(4.4)

For an initial hermitian metric G0 on the vector space W = H0(Pn, TP
n(k))∗, our

generalized T-operator (3.12) gives the iterations

Gm+1 = T (Gm) =
dimW

n Vol(Pn)

∫

Pn

z(z†G−1
m z)−1z† dV .

We tested the converges of the T -map starting with G0 = I in the case n = 2 for

k = 1, . . . , 5. In all cases we converged to a given G∞ for less than 10 iterations, with a

precision of 0.1%.

The balanced metric H(k) on the vector bundle TP
n(k) induced by G∞ is given by

H(k) = (z†G−1
∞ z)−1. (4.5)

Let h be Fubini-Study metric on the hyperplane bundle OPn(1), that is the metric with

constant scalar curvature. Then the metric

Hk := H(k) ⊗ h−k = (z†G−1
∞ z)−1 ⊗ h−k

is the balanced metric on TP
n. Our numerical computations show that this is indeed the

Fubini-Study metric on TP
n, as explained earlier. The numerical agreement is within 0.5%.

This provides the first non-trivial test of our conjecture.

4.2 A stable rank 3 bundle over P
2

In this section we test our generalized T-operator on a rank 3 vector bundle V ∗ over P
2.

We first consider its dual V , defined by four linearly independent global sections {mi} of

OP2(2) through the SES

0 // V // O⊕4
P2

m
// OP2(2) // 0.
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This bundle has moduli, which are implicitly determined by the choice of the sections {mi}.

Before choosing these, let us check stability, which does not depend on the specifics of this

choice.

To check stability, we have to ensure that neither V nor ∧2V have destabilizing line

bundles. Using the canonical isomorphism

∧2V = det V ⊗ V ∗

we find the slopes

µ(V ) = −2/3, µ(∧2V ) = −4/3.

Since Pic(P2) = Z, all line bundles are of the form OP2(p) for some p. Hence it is sufficient

to show that

H0(P2, V ) = 0, H0(P2,∧2V (1)) = 0.

The first fact follows from the defining sequence of V , if we assume that {mi} are linearly

independent. To prove the second statement we use

H0(P2,∧2V (1)) = H0(P2, V ∗(−1)) = H2(P2, V (−2))∗.

Again, this statement follows easily from the defining sequence of V . Finally, stability of

V implies stability for V ∗.

We will now compute the hermitian Yang-Mills connection on V ∗ using our generalized

T-operator. First observe that V ∗(k) fits into the short exact sequence

0 → OP2(k − 2) → OP2(k)⊕4 → V ∗(k) → 0. (4.6)

This leads to another SES

0 → H0(P2,OP2(k − 2)) → H0(P2,OP2(k)⊕4) → H0(P2, V ∗(k)) → 0.

We can use this expression for an explicit parameterization of H0(P2, V ∗(k)).

For concreteness let us choose to be four global sections {mi}
4
i=1 defining V to be

Z1Z2, Z0Z1, Z0Z2, Z2
0 .

Now we choose a frame {êi} for OP2(k)⊕4. The defining equation (4.6) of V ∗(k) imposes

the condition
∑

i miêi = 0, and gives a frame for V ∗. Locally we can solve for ê0, and

working in inhomogeneous coordinates wi we find that

ê0 = −
1

w2
ê1 −

1

w1
ê2 −

1

w1w2
ê3.

Expanding the global sections of H0(P2, V ∗(k)) in the frame {êi}
3
i=1 gives a matrix, which

is the embedding map.

We studied the convergence of our generalized T -operator numerically for k = 2, 3 and

4, and found that convergence was achieved for less than 10 iterations. As before, the

metric on V ∗(k) is given by

H(k) = (z†G−1
∞ z)−1, (4.7)
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while the corresponding metric on V ∗ is

Hk := H(k) ⊗ h−k = (z†G−1
∞ z)−1 ⊗ h−k,

where h is again the Fubini-Study metric on OP2(1).

Since in this case the balanced metric on V ∗ is not a priori known, one needs a different

approach, than used in the previous section for TP
2, to test how close is the approximate

balanced metric to satisfying the hermitian Yang-Mills equation. But this quite easy to do

numerically once the balanced metric G∞ is known, as all we need to do is to check how

close we are to satisfying eq. (3.7). In all cases considered eq. (3.7) was satisfied to within

1% accuracy.

4.3 A rank 3 bundle on the Fermat quintic

In this section we turn to a much more complicated case than our previous examples, that

of a stable rank 3 bundle on the Fermat quintic Q in P
4:

Q : Z5
0 + Z5

1 + · · · + Z5
4 = 0. (4.8)

Testing our generalized T-operator in this case necessitates knowledge of the Ricci flat

metric on the Fermat quintic. For this we use Donaldson’s original T-operator eq. (2.15),

which we turn to first.

4.3.1 Ricci flat metric on Fermat quintic

We consider the embedding of Q given by the complete linear system of cubics,

H0(Q,OQ(3)), whose complex projectivization is isomorphic to P
34. The balanced metric

will be the restriction of a Fubini-Study metric on P
34. An indirect test that this has indeed

vanishing Ricci curvature is included in the next section.

In order to do practical calculations with Donaldson’s T-map, we have to perform

the integrals on Q numerically. We introduce a discrete approximation to the Calabi-Yau

volume form dµΩ = Ω ∧ Ω̄, defining it by a weighted set of M points {xa}
M
a=1 ∈ Q, with

masses νa:
∫

Q

( )

dµΩ ≈
M
∑

a=1

( )

δ(x − xa)νa. (4.9)

This numerical measure gives an accurate approximation to the analytical one for large M .

In our computations we build 10 different samples of 100,000 points, which we use indepen-

dently to iterate the T-map until convergence is reached, i.e., the sequence {T r(G0)}r=0

obeys

||T r+1(G0) − T r(G0)|| < ǫ.

In our simulations the fixed point of this discrete version of the T -map was reached after

15-20 iterations. Each weighted point set gave rise to a convergent sequence. The 10

different hermitian forms {Ge
∞}10

e=1 approximating the balanced metric in PH0(Q,OQ(3))

agree up to

max

[

σ(Ge
∞)

|〈Ge
∞〉|

]

≈ 0.9%, (4.10)
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Figure 1: The shape of the rational curve for the balanced and non-balanced metrics.

where |〈Ge
∞〉| is the average matrix of the ten different outputs and σ(Ge

∞) is the standard

deviation matrix. The ratio σ(Ge
∞)/|〈Ge

∞〉| is computed entry by entry, and the maximum

is taken over all entries. We used the average 〈Ge
∞〉 as approximation for the balanced

metric on H0(Q,OQ(3)).

To get a visual picture of the geometry implicit in the construction, we consider the

rational curve t : P1 →֒ Q, defined locally by the parametrization
(

1, −1, t, 0, −t
)

(4.11)

with t ∈ C ∪ ∞. Take the sections Z3
1 + Z3

4 and Z3
0 from H0(Q,OQ(3)), and consider

the function s = (Z3
1 + Z3

4 )/Z3
0 = w3

1 + w3
4. In figure 1 we consider the real function |s|2G

restricted to the rational curve (4.11), where we take the stereographic projection of the

complex t-plane and for a given t we plot |s(t)|2G in the radial direction. For the balanced

metric 〈Ge
∞〉 the deviation from being spherical is small. For comparison we also show the

same plot for the case of a generic non-balanced hermitian form G with random entries.

4.3.2 Solution of the hermitian Yang-Mills equation

In this section we use the generalized T-operator to produce a hermitian Yang-Mills connec-

tion on a rank three stable vector bundle V on the Fermat quintic Q. We also implicitly test

that the previously obtained balanced metric on Q indeed has vanishing Ricci curvature.

We define the rank three bundle V by the following SES

0 // OQ(−1)
β

// O⊕4
Q

// V // 0.

β is given by four generic global sections of OQ(1), which do not intersect on Q, hence V

is indeed a vector bundle. In addition, the first Chern class of V is c1(V ) = H, hence V
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is not a simple twist of the tangent bundle of Q. That fact that V is stable was proved

in [18].

Once again, we use

0 // OQ(k − 1) // O⊕4
Q (k) // V (k) // 0,

and its associated long exact sequence in cohomology

0 // H0(Q,OQ(k − 1)) // H0(Q,O⊕4
Q (k)) // H0(Q,V (k)) // 0,

to derive a frame for V and an explicit parameterization for the global sections. We choose

β = (Z0, . . . , Z3). Using the frame {êi}
4
i=0 for O⊕4

Q , we also get a frame for V with the

relation

ê0 = −
3

∑

i=1

wiêi.

In this paper we restrict to the case k = 1 for which dimH0(Q,V (1)) = 19. The

coordinate matrix

z(w) =







1 . . . w4 0 0 −w2
1 −w1w2 −w1w3 −w1w4

0 1 . . . w4 0 −w1w2 −w2
2 −w3w2 −w4w2

0 0 1 . . . w4 −w1w3 −w2w3 −w2
3 −w4w3






(4.12)

gives the embedding into the Grassmannian Q →֒ G(3, 19).

Using the integration techniques described in the previous section, we iterate the gen-

eralized T-operator. We reach the fixed point after 12-15 iterations for several different

samples of weighted points which approximate the analytical measure, allowing us to esti-

mate the balanced metric for H0(Q,V (1)) with an error of 1.1%.4

The metric on V (1) is given by

H = (z†G−1
∞ z)−1, (4.13)

To test the accuracy of this metric we evaluate the right hand side of the hermitian Yang-

Mills equations (3.7). We find the mean to be

〈ωij̄Fij̄〉 =
1

Vol(Q)

∫

Q

(

ωij̄Fij̄

)

dµΩ ≈ 1.31 × I3×3

with I3×3 the 3×3 identity matrix. In our conventions the theoretical value of the constant

is 4/3. The standard deviation of the individual matrix elements is

σ
(

ωij̄Fij̄

)

= max

[√

1

Vol(Q)

∫

Q

(

ωij̄Fij̄ − 〈ωij̄Fij̄〉
)2

dµΩ

]

≈ 0.15,

where the square-root and the square are performed entry by entry. Therefore, ωij̄Fij̄ is a

global constant on Q times the identity, within an error of 0.15/1.31 ≈ 11%. This implies

that the hermitian Yang-Mills equation (3.7) is satisfied with this accuracy.

4We estimate the errors using (4.10).
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Figure 2: The probability density in the radial direction on the rational curve.

Testing the hermitian Yang-Mills equation provides an implicit test of Ricci flatness,

since it is precisely the Ricci flat metric that is needed in the hermitian Yang-Mills equation.

If we had gotten this metric wrong, then we would have had no chance of satisfying the

hermitian Yang-Mills equation.

Finally, to visualize the construction, in figure 2 we took the rational curve defined

in (4.11), and we plotted the function |Ψ|2G, where

Ψ = (w1w4)ê1 + (w2w4)ê2 + (w3w4)ê3

and G is the balanced metric we obtained. If we interpret Ψ as a wave-function, then

figure 2 exhibits the probability density 〈Ψ|Ψ〉 in the radial direction, restricted to the

rational curve (4.11).
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